Gallium Nitride & Related Wide Bandgap Materials and Devices

Dr. Edgar J. Martinez Program Manager

DARPATech 2000

GaAs IC Markets

1999 Market \$11 Billion 2005 Market \$20 Billion

GaAs IC Market 1990-1999

Yesterday's military challenges became today's commercial reality

Unmet Challenges in RF Analog Front Ends

- **❖** Power Density > 1 W/mm
- Multi-octave Bandwidth
- ❖ High Efficiency > 50%
- Linearity
- Low Noise Figures
- Low Phase Noise

Future DARPA Focus

Electronic Properties of Semiconductor Materials

	Si	GaAs	InP	4H	GaN
	()	(AlGaAs/	(InAlAs/	SiC	(AlGaN/
		InGaAs)	InGaAs)	()	GaN)
Bandgap (eV)	1.1	1.42	1.35	3.26	3.49
Electron mobility	1500	8500	10000	700	900
(cm ² /Vs)					
Saturated (peak)	1	2.1	2.3	2	2.7
electron velocity					
(x10 ⁷ cm/s)					
2DEG sheet electron	NA	<4 x 10 ¹²	$<4 \times 10^{12}$	NA	20x10 ¹²
density (cm ⁻²)					
Critical breakdown	0.3	0.4	0.5	2	3.3
field (MV/cm)					
Thermal conductivity	1.5	0.5	0.7	4.5	>1.7
(W/cm-K)					
Relative dielectric	11.8	12.8	12.5	10	9.0
constant $(\mathcal{E}r)$					

Silicon cannot provide the power-bandwidth product for military applications

III-N Material Challenges

- Substrates difficult to produce
- High temperature material growth process
- **Defect rampant**
- **Low hole mobility**
- Deep donors and acceptors

Limitations of Today's Solid-State Devices

FET Microwave Output Power

 $P_{out} = (\Delta I \times \Delta V)/8$

Current Technology Limitations and Potential Improvements

Microsystems Technology Office -

Today's Solid State Regime

GaN - A Disruptive Technology

State-of-the-art **Microwave Power Module**

Future RF Single Power Chip in an Advanced Package

♦ >35X reduction in volume

❖ >50X reduction in weight

GaN PAmp

High power chips replace heavy and bulky RF power combiners and Microwave Power Modules

operation

WBG Compound Semiconductors
Focus Areas

❖ Material Technology

►Bulk Crystal

> Epitaxial Materials

Device Technology

Thermal Control & Packages

Technical Strategy

Comprehensive Effort is Required for Development of Robust Technology

System Performance

MMIC Performance

Packaging & Thermal Management

Device Performance

Material Properties & Parameters

- Apply knowledge & Experience from GaAs MMIC Community
- Leverage from Emerging GaN
 Commercial Developments –
 Economies of Scale

WBG Semiconductors' Optical Benefits

UV Solar Blind Detectors & Current and Future Missile Warning Systems Ground

AN/AAR-47 Ultraviolet Helos Transports

AN/AAR-57 Ultraviolet Helos Transports Tactical

• Ground vehicle self protection

- Airborne missile threat warning
 - AAA/MG detection and estimation
 - UV search and track
- Biological agent detection
- Engine monitoring
- Combustion control

Today's Technology Bulky, Fragile and Expensive

Commercial Opportunities for GaN

- Traffic lights
- Illumination
- **Automotive**
- Medicine
- **Outdoor displays**
- Mass data storage
- Wireless communications

Data Source: Strategies Unlimited 1997

The military requirements drive analog and UV detector applications

The commercial opportunities drive optoelectronic applications

Summary

- **&** GaN enabling technology for many military applications
- ***** Many material and device challenges
- **❖** Technical strategy requires comprehensive development efforts with many industry and academia partnerships
- **❖** Significant system benefits anticipated
- **Commercial interest will not meet military needs**

DARPA is in the process of creating new opportunities with WBG semiconductors